History of IOL Formulas

Empirical Formulas			
	Benefits	Drawbacks	
Sanders-Retzlaff-Kraff (SRK) (1980)	Most accurate at the time; best for axial lengths (L)	Inaccurate; doesn't	
P = A - 2.5L - 0.9K	between 22.00-24.50 mm	consider ELP	
SRKII (~1989)	Better than SRK for longer and shorter eyes (A-	Still too inaccurate;	
P = A - 2.5L - 0.9K + C	constant correction factors added)	doesn't consider ELP	
VRF (2017)	Better than the other empirical formulas; considers		
	AL, Ks, ACD, and K diameter to estimate ELP		

Theoretical Formulas			
	Benefits	Drawbacks	
1 st Generation Theoretical	Accounted for ELP; for ACIOLs; reduced to:	Assumed ELP was	
Fyodorov (1967)	$P = \frac{n}{-1} - \frac{nK}{-1}$	always 4.0 mm; mainly	
Colenbrander (1973)	$\Gamma = \frac{1}{L-c} - \frac{1}{n-cK}$	for ACIOLs	
Van der Heijde (1975)	<i>n</i> for refractive index of the aqueous and vitreous		
Thijssen (1980)			
2 nd Generation Theoretical	Adjusted ELP based on Axial length	Still not accurate	
Binkhorst (1975)		enough	
Hoffer (1975)			
3 rd Generation Theoretical	Measure both AL and Ks to estimate ELP	Best for "normal" ALs	
SRK/T (T=theoretical) (1990)		between ~22-~26 and	
Holladay I (1988)		"normal" Ks between	
Hoffer Q (~1993)		~41D-~46D	
T2 (~2010)			
4 th Generation Theoretical	Measure ACD and other variables to estimate ELP;		
Holladay II (1992)	better for "abnormal" ALs and Ks; Haigis has an		
Barrett II Universal (2010)	added benefit of not relying on Ks (good for post-		
Haigis (~2014)	LASIK)		
$ELP = a_0 + a_1AC + a_2AL$			
5 th Generation Theoretical	Incorporates race and gender data		
Hoffer H-5 (2014)			
AI/Machine Learning	Uses a combination of theoretical/empirical optics		
Kane (2017)	and/or components of AI/machine learning		
Hill RBF (2016)			
PEARL-DGS (2021)			
Ray Tracing	Simulates whole pseudophakic eye and accounts		
Olsen (2013)	for aberrations		
Okulix (2017)			
Naeser 2 (2019)			
VRF-G (2020)			
Combination	Combines the most accurate portions of other		
Ladas Super Formula (2019)	formulas to make a "super formula" based on		
	patient measurements; also uses Al		

Other Vergence-Based Formulas

Emmetropia Verifying Optical (EVO) 2.0 (2019) – Thick lens formula, considers geometry of IOL Cooke K6 (2020) – Uses multiple refractive indices for various media in the eye

Castrop (2021) - Pseudophakic eye model with 4 refractive surfaces and 3 formula constants

IOL Formula Adjustments

Wayne-Koch Adjustment – Applied to some third- and fourth-generation IOL formulas to optimize the calculation for AL >25 mm; great for Holladay II

History of IOL Formulas

IOL Calculation Terms and Concepts:

Empirical Formulas: Linear regression of refractive data

Theoretical Formulas: Based on formal optics and model eye

Ray-Tracing: Calculates the exact and paraxial rays through refractive elements of the eye to calculate postoperative ELP **Vergence**: Based on principle of theoretical refractive vergence to predict what IOL power would refract an image on the retina

Thin Lens: Approximate the IOL as a thin lens; ELP is considered the distance from anterior corneal surface to infinitely thin IOL plane

Thick Lens: ELP(T) (T for "thick") is considered the distance between the principle image plane of the cornea and principle object plane of the IOL; differentiates between the IOL's physical and optical position

A = A-constant (from manufacturer)

- P = Emmetropic power
- L or AL = Axial Length
- AC = Phakic AC depth
- K = Corneal Power
- C = Correction factor
- n = Refractive index
- c = Estimated post-op lens position
- a = Other constants

SRK II Correction Values for C		
If <i>L</i> <u><</u> 20	3	
If <i>L</i> <u>></u> 20 and < 21	2	
If <i>L</i> <u>></u> 21 and < 22	1	
If <i>L</i> <u>></u> 22 and < 24.5	0	
If <i>L</i> ≥ 24.5	-0.5	

